Profile
Education:

     2000-2006   Ph.D.:  Dept. of Physics, Northwestern University (Evanston, IL)
1995-1999   B.S.: Dept. of Physics, Peking University (Beijing)
Experience:

     2009-      Associate Professor: Dept. of Optical Engineering, Zhejiang University 
2006-2008 Postdoc: NIST & JQI (Gaithersburg, MD)
Teaching:          

     2010- 《Nanophotonics》     (Graduate course)  
     2013- 《Physical Optics》  (Undergraduate course) 
Research interests: 

1.Nonlinear optics & quantum optics
2.Semiconductor quantum dots
3.Microcavity (cavity QED, deformed cavities)

  Micro/nanofiber    
   

1-D Micro/nanostructures

Study the light-matter interaction
in a 1-D mciro/nano-waveguide
(silica or semiconductor), such
as nonlinear optics, quantum
optics, and optomechanics.

 
PRA 83, 053830 (2011); OE 20, 8667 (2012); OE 21, 22314 (2013)
       
  Quantum dots    
 

 

Entangled photon pair generation

Polarization entangled
photon-pairs were measured
from a self-assembled
semiconductor quantum dot
using AC Stark effect.

 
PRL 101, 027401 (2008); PRL 103, 217402 (2009)
       
  Microcavity    
   

Cavity QED

The existing of microcavity will
change the optical density of
states, and thus affect the
emission property of a quantum
dot that is coupled to the cavity.

 
OL 27, 948 (2002); PRL 98, 117401 (2007)
       
   

Dynamic localization

   The roughness on the
boundary of a microdisk will
scatter the propagating light,
and thus decrease the Q
-
factor of the cavity mode.
However, an effect called
dynamic localization will
suppress the light diffusion
in the angular momentum space,
which results in the forming
of relatively high-Q modes.

 
PNAS 101, 10498 (2004); OE 13, 5641 (2005)
       
   

Chaotic microcavity

Cavity with stadium shape has
the ray dynamics propertiy as
fully chaotic. However, there
exists high-Q scar modes
which correspond to single
or multipole unstable periodic
orbits. And such modes exhibit
interesting behavior with the
change of the cavity shape.   

 
PRA 72, 023815 (2005); APL 90, 081108 (2007); APL 91, 041108 (2007)
       
   

Microcavity & applications

2-D and 3-D whispering-gallery
mode based mcircavities were
fabricated using photolithography
and fs-laser direct writing
methods. UV laser on silicon
substrate was demonstrated,
and its application as active
chemical sensor was shown. 

 
APL 84,2488 (2004); APL 85,3666 (2004); OE 20,8667 (2012); OL 38,1458 (2013)
       
 

 

Select Publications:  

29. Yize Lu, Fuxing Gu, Chao Meng, Huakang Yu, Yaoguang Ma, Wei Fang, and Limin Tong, “Multicolour laser from a single bandgap-graded CdSSe alloy nanoribbon,” Opt. Express. 21, 22314 (2013)

28. Jintian Lin, Yingxin Xu, Jiangxin Song, Bin Zeng, Fei He, Huailiang Xu, Koji Sugioka, Wei Fang, and Ya Cheng, “Low-threshold whispering-gallery-mode microlasers fabricated in a Nd:glass substrate by three-dimensional femtosecond laser micromachining,” Opt. Lett. 38, 1458 (2013)

 

27. Fuxing Gu, Huakang Yu, Wei Fang, and Limin Tong, “Nanoimprinted polymer micro/nanofiber bragg gratings for high-sensitivity strain sensing,” IEEE Photo. Tech. Lett. 25, 22 (2013)

26. Jintian Lin, Shangjie Yu, Yaoguang Ma, Wei Fang, Fei He, Lingling Qiao, Limin Tong, Ya Cheng, and Zhizhan Xu, “On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing,” Opt. Express 20, 10212 (2012)

25. Fuxing Gu,  Huakang Yu, Wei Fang, Limin Tong, “Low-threshold supercontinuum generation in semiconductor nanoribbons by continuous-wave pumping,” Opt. Express 20, 8667 (2012)

 

24. Q. H. Song, Li Ge, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, A. Eberspächer, W. Fang, G. S. Solomon, and Hui Cao, “Wavelength-scale deformed microdisk lasers,” Phys. Rev. A 84, 063843 (2011)

 

23. Fuxing Gu, Huakang Yu, Wei Fang, and Limin Tong, “Broad spectral response in composition-graded CdSSe single nanowires via waveguiding excitation,” Appl. Phys. Lett. 99, 181111 (2011)

 

22. Fuxing Gu; Lei Zhang; Huakang Yu; Wei Fang; Jiming Bao; Limin Tong, “Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation,” Nanotechnology 22, 425201 (2011)

 

21. Huakang Yu, Wei Fang, Fuxing Gu, Min Qiu, Zongyin Yang, and Limin Tong, “Longitudinal Lorentz force on a subwavelength-diameter optical fiber,” Phys. Rev. A 83, 053830 (2011)

 

20. Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional Laser Emission from a Wavelength-Scale Chaotic Microcavity,” Phys. Rev. Lett. 105, 103902 (2010)

 

19. J. Fu, H. Dong, and W. Fang, “Subwavelength focusing of light by a tapered microtube,” Appl. Phys. Lett. 97, 041114 (2010)

 

18. P. S. Kuo, W. Fang, and G. S. Solomon, “4-quasi-phase-matched interactions in GaAs microdisk cavities,” Optics Letters 34, 3580 (2009)

 

17. Andress Muller, Wei Fang, John Lawall, and Glenn S. Solomon, “Creating Polarization-Entangled Photon Pairs from a Semiconductor Quantum Dot Using the Optical Stark Effect,” Phys. Rev. Lett. 103, 217402 (2009)

 

16. Qinghai Song, Wei Fang, Boyang Liu, Seng-Tiong Ho, Glenn S. Solomon, and Hui Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009)

 

15. Shanshan Wang, Zhifang Hu, Huakang Yu, Wei Fang, Min Qiu, and Limin Tong, “Endface reflectivities of optical nanowires”, Optics Express 17, 10881 (2009)

 

14. Andress Muller, Wei Fang, John Lawall, and Glenn S. Solomon, “Emission spectrum of a dressed exciton-biexciton complex in a semiconductor quantum dot,” Phys. Rev. Lett. 101, 027401 (2008)

 

13. W. Fang, and H. Cao, “Wave interference effect on polymer microstadium laser,” Appl. Phys. Lett. 91, 041108 (2007)

 

12. Z. G. Xie, S. Goetzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a Single Quantum Dot State on the Characteristics of a Microdisk Laser,” Phys. Rev. Lett. 98, 117401 (2007)

 

11. W. Fang, H. Cao, and G. S. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007)

 

10. X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A. 74, 053812 (2006)

 

9. W. Fang, A. Yamilov, and H. Cao, “Analysis of high-quality modes in open chaotic microcavities,” Phys. Rev. A 72, 023815 (2005)

 

8. W. Fang, H. Cao, Viktor Podolskiy, and Evgnii Narimanov, “Dynamical localization in microdisk lasers,” Optics Express 13, 5641 (2005)

 

7. Z. Xie, W. Fang, H. Cao, and G. S. Solomon, "Regrowth dynamics of InAs quantum dots on the GaAs circular mesa," J. Crystal Growth 278, 342 (2005)

 

6. W. Fang, D. Buchholz, R. Bailey, J. Hupp, P. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett. 85, 3666 (2004)

 

5. V. A. Podolskiy, E. E. Narimanov, W. Fang, and H. Cao, “Chaotic Microlasers based on dynamical localization,” Proc. Nat. Aca. Sci. 101, 10498 (2004)

 

4. X. Liu, W. Fang, Y. Huang, X. H. Wu, S. T. Ho, H. Cao, R. P. H. Chang, “Optically-pumped ultraviolet microdisk laser on a silicon substrate,” Appl. Phys. Lett. 84, 2488 (2004)

3. W. Fang, J. Y. Xu, A. Yamilov, H. Cao, Y. Ma, S. T. Ho, and G. S. Solomon,“Large enhancement of spontaneous emission rates of InAs quantum dots in GaAs microdisks, Optics Letters 27, 948 (2002)

 

2. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78, 407 (2001)

 

1. Bei Zhang; Wei Fang; Dajun Wang; Feng Luan, “Anisotropic radiation pattern from InGaAlP quantum well mesa-like microdisks,” Solid State Comm. 116, 201 (2000)

Contact

Phone:086-571-87952016
E-mail:wfang08 at zju.edu.cn