1. Lai, C. Y., Lv, P. L., Dong, Q. Y., Yeo, S. L., Rittmann, B.E., Zhao, H. P.* Bromate and nitrate bio-reduction coupled with poly-β-hydroxybutyrate production in a methane-based membrane biofilm reactorEnviron. Sci. & Technol. 2018, In press.

2. Lv, P. L., Zhong, L., Dong, Q. Y., Yang, S. L., Shen, W. W., Zhu, Q. S., Lai, C. Y.,* Luo, A. C., Tang, Y. N., Zhao, H. P.* The effect of electron competition on chromate reduction using methane as electron donor. Environ. Sci. Pollut. R. 2018, 25 (7), 6609-6618. (IF2016=2.741, IF5Y=3.023)

3. Liu, X., Wang, Y. Q., Zhao, H. P., Song, L. Y.* Metagenomic analysis of antibiotic resistance genes (ARGs) during refuse decomposition. Sci. Total. Environ. 2018, 634, 1231-1237.

4. Lee, H. S.,* Tang, Y., Rittmann, B. E., Zhao, H. P. Anaerobic oxidation of methane coupled to denitrification: fundamentals, challenges, and potential. Crit Rev Environ. Sci. & Technol. 2018. Under Revision. 

5. Li, W., Liu, S., Zhang, M., Zhao, H. P., Zheng, P.* Oxidation of organic electron donor by denirification: performance, pathway, and key microorganism Chem. Engin. J.  2018, 343, 554-560.


1. Zhong, L., Lai, C. Y., Shi, L. D., Wang, K. D., Dai, Y. J., Liu, Y. W., Ma, F.*, Rittmann, B. E., Zheng, P., Zhao, H. P.* The nitrate effect on chromate bio-reduction in a methane-based MBfRWater. Res. 2017, 115, 130-137. (IF2016=6.942, IF5Y=7.715)

2. Wen, L. L., Zhang, Y., Chen, J. X., Zhang, Z. X., Yi, Y. Y., Tang, Y., Rittmann, B. E., Zhao, H. P. *The dechlorination of TCE by a perchlorate reducing consortiumChem. Engin. J2017313, 2015-2021. (IF2016=6.216, IF5Y=6.159)

3. Wen, L. L., Chen, J. X., Fang, J. Y., Li. A., Zhao, H. P. * Effects of 1,1,1-trichloroethane and triclocarban on reductive dechlorination of trichloroethene in a TCE-reducing cultureFronties in Microbiol. 2017,8, 1349. (IF2016=4.076, IF5Y=4.526)

4. Wang, R.,Yang,C., Zhang, M., Xu, S. Y.,Dai, C. L., Liang, L. Y., Zhao, H. P., Zheng, P.* Chemoautotrophic denitrification based on ferrous iron oxidation: reactor performance and sludge characteristicsChem. Engin. J. 2017, 313, 693-701. (IF2016=6.216, IF5Y=6.159)

5. Zhou, C., Wang, Z. C., Ontiveros-Valencia, A., Long, M., Lai, C. Y., Zhao, H. P., Xia, S. Q., Rittmann, B. E. Coupling of Pd nanoparticles and denitrifying biofilm promotes H2-based nitrate removal with greater selectivity towards N2. Appl. Cata. B. 2017, 206, 461 - 470. (IF2016=9.446, IF5Y=8.870)


1. Lai, C. Y., Wen, L. L., Shi, L. D., Zhao, K. K., Wang, Y. Q., Yang, X., Rittmann, B. E., Zhou, C., Tang, Y. N., Zheng, P., Zhao, H. P.* Selenate and nitrate bio-reductions using methane as the electron donor in a membrane biofilm reactorEnviron. Sci. & Technol. 2016, 50, 10179-10186.(IF2015=5.393, IF5Y=6.96).

2. Lai, C. Y., Zhong, L., Zhang, Y., Chen, J. X., Wen, L. L., Shi, L. D., Sun, Y.P., Ma, F.*, Rittmann, B. E., Zhou, C., Tang, Y. N., Zheng, P., Zhao, H. P.* Bio-reduction of chromate in a methane-based membrane biofilm reactor.Environ. Sci. & Technol. 2016, 50, 5832-5839. (IF2015=5.393, IF5Y=6.96)

3. Lai, C. Y., Wen, L. L., Zhan, Y., Luo, S. S., Wang, Q. Y., Luo, Y. H., Chen, R., Yang, X., Rittmann, B.E., Zhao, H. P.* Autotrophic antimonate bio-reduction using hydrogen as the electron donorWater. Res. 2016, 88, 467-474. (IF2015=5.991, IF5Y=7.715)

4. Li, W., Shan, X. Y., Wang, Z. Y., Lin, X. Y., Li, C. X., Cai, Z. Y., Abbas, G., Zhang, M., Shen, L. D., Hu, Z. Q., Zhao, H. P.*, Zheng, P.* Effect of self-alkalization on nitrite accumulation in high-rate denitrification system: performance, microflora and enzyme. Water. Res. 2016, 88, 758-765. (IF2015=5.991, IF5Y=7.715). 

5. Wen, L. L., Yang, Q., Zhang, Z. X., Yi, Y. Y., Tang, Y., Zhao, H. P.* Interaction of perchlorate and trichloroethene bioreductions in mixed anaerobic cultureSci. Total. Environ. 2016, 571, 11-17.(IF2015=3.976, IF5Y=5.102)

6. Wen, L. L., Lai, C. Y., Yang, Q., Chen, J. X., Zhang, Y., Ontiveros-Valencia, A., Zhao, H. P.* Quantitative detection of selenate-reducing bacteria by real-time PCR targeting the selenate reductase geneEnzyme. Microb. Tech. 2016, 85, 19-24. (IF2015=2.624, IF5Y=2.962).

7. Zhang, Y., Chen, J. X., Wen, L. L., Tang, Y. N., Zhao, H. P.* Effects of salinity on simultaneous reduction of perchlorate and nitrate in an methane-based membrane biofilm reactorEnviron. Sci. Pollut. R. 2016, 23, 24248-24255. (IF2015=2.76, IF5Y=3.023)

8. Chen, R., Luo, Y. H., Chen, J. X., Zhang, Y., Wen, L. L., Shi, L. D., Zhao, H. P.*, Tang, Y. N., Rittmann, B. E., Zheng, P. Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptorsEnviron. Sci. Pollut. R. 2016, 23, 9540-9548. (IF2015=2.76, IF5Y=3.023).

9. Zhou, C.*, Ontiveros-Valencia, A., Wang, Z. C., Maldonado, J., Zhao, H.P., Krajmalnik-Brown, R., Rittmann, B. E. Palladium recovery in a H2-based membrane biofilm reactor:  formation of Pd(0) nanoparticles through enzymatic and autocatalytic reductionsEnviron. Sci. & Technol. 2016, 50, 2546-2555.   (IF2015=5.393, IF5Y=6.96)

10. Wang, R., Zheng, P.*, Ding, A. Q., Zhang, M., Ghulam, A., Zhao, H. P.  Effects of inorganic salts on denitrifying granular sludge: the acute toxicity and working mechanismsBioresource. Technol. 2016, 204, 65-70.  (IF2015=4.917, IF5Y=6.102)

11. Li, W., Lin, X. Y., Chen, J. J., Cai, Z. Y., Abbas, G., Hu, Z. Q., Zhao, H. P., Zheng. P.* Enrichment of denitratating bacteria from a methylotrophic denitrifying culture. Appl. Microbiol. Biotechnol.  2016, 100, 10203–10213. (IF2015=3.376, IF5y=3.716) 


1. Luo, Y. H., Chen, R., Wen, L. L., Meng, F., Zhang, Y., Lai, C. Y., Rittmann, B. E., Zhao, H. P.*, Zheng, P. Complete perchlorate reduction using methane as the sole electron donor and carbon sourceEnviron. Sci. & Technol. 2015, 49, 2341-2349. (IF5y=6.96)

2. Wen, L. L., Zhan, Y., Pan, Y. W., Wu, W. Q., Meng, S. H., Zhou, C., Rittmann, B. E., Tang, Y. N., Zheng, P., Zhao H. P.* The roles of methanogens and acetogens in dechlorination of trichloroethene using different electron donors.Environ. Sci. Pollut. R. 2015. 22, 19039-19047. (IF5y=3.023)

3. Song, L. Y.*, Wang Y. Q., Zhao H. P.*, Long D. T. Composition of bacterial and archaeal communities during landfill refuse decomposition processesMicrobiol. Res. 2015.181, 105-111. (IF5y=3.136)

4. Wang, R., Zheng, P.*, Zhang, M., Zhao, H. P.Ji, J. Y., Li, W., Zhou, X. X. Bioaugmentation of nitrate-dependent  anaerobic ferrous oxidation by heterotrophic denitrifying sludge addition: effect and mechanism. Bioresource. Technol. 2015. 197, 410-415. (IF5y=6.102)


1. Lai C. Y., Yang, X., Tang, Y., Rittmann, B. E., Zhao, H. P.* Nitrate shaped selenate reducing microbial community in a hydrogen-based biofilm reactorEnviron. Sci. & Technol. 2014, 48, 3395-3402. (IF5y=6.96)

2. Zhao, H. P.*, Ontiveros-Valencia, A., Tang, Y., Kim, B., Van-Ginkel, S., Friese, D., Overstreet, R., Smith, J., Evens, P., Krajmalnik-Brown, R., Rittmann, B. E. Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactorsWater. Res. 2014, 54, 115-122. (IF5y=7.715)

3. Ontiveros-Valencia, A., Tang, Y. N., Zhao, H. P., Friese, D., Overstreet, J. S., Evans, P.; Rittmann, B. E., Krajmalnik-Brown, R.* Pyrosequencing analysis yields comprehensive assessment of microbial communities in pilot-scale two-stage membrane biofilm reactorsEnviron. Sci. & Technol. 2014, 48, 7511-7518. (IF5y=6.96)

4. Tang, W., Song, L. Y.*, Li, D., Qiao, J., Zhao, T. T., Zhao, H. P. Production, characterization, and flocculation mechanism of cation independent, pH tolerant, and thermal stable bioflocculant from Enterobacter sp. ETH-2PLOS ONE. 2014, 9(12):e114591. doi:10.1371/journal.pone.0114591. (IF5y=3.394)



1. Zhao, H. P., Zehra, E. I., Ontiveros-Valencia, A., Tang, Y., Brown, P., Rittmann, B. E., Krajmalnik-Brown, R.* Effects of multiple electron acceptors on microbial interactions in a hydrogen-based biofilm. Environ. Sci. & Technol. 2013, 47, 7396−7403. (IF5y=6.96)

2. Zhao, H. P.*, Ontiveros-Valencia, A., Tang, Y., Kim, B., Krajmalnik-Brown, R., Rittmann, B. E. Using a two-stage hydrogen-based membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in the presence of nitrate and sulfateEnviron. Sci. & Technol. 2013, 47 (3), 1565-1572. (IF5y=6.96)(Featured by Environmental Progress at the front page) 

3. Zeng, Z., Li, T. Q., Zhao, F. L., He, Z. L., Wang, H. L., Zhao, J., Rafiq, M. T., Zhao, H. P. *, Yang, X.* Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. J. Zhejiang. Univ. Sci-B. 2013, 14, 1152-1161. (IF5y=1.629)



1. Tang, Y., Zhao, H. P., Marcus, K. A., Rittmann, B. E., Krajmalnik-Brown, R.* A steady state biofilm model for simultaneous reduction of nitrate and perchlorate, PART 1-Model development and numerous solutionsEnviron. Sci. & Technol. 2012, 46, 1598-1607. (IF5y=6.96)

2. Tang, Y., Zhao, H. P., Marcus, K. A., Rittmann, B. E., Krajmalnik-Brown, R.* A steady state biofilm model for simultaneous reduction of nitrate and perchlorate, PART 2-Parameters optimization and results and discussionEnviron. Sci. & Technol. 2012, 46, 1608-1615.  (IF5y=6.96)

3. Ontiveros-Valencia, A., Ziv-El, M., Zhao, H. P., Feng, L., Krajmalnik-Brown, R., Rittmann, B. E.* Interactions between nitrate-reducing and sulfate-reducing bacteria coexisting in a hydrogen-fed biofilmEnviron. Sci. & Technol.2012. 46, 11289-11298. (IF5y=6.96)



1. Zhao, H. P.*, Van Ginkel, S., Kang, D. W., Rittmann, B.E., Krajmalnik-Brown, R. Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactorEnviron. Sci. & Technol. 2011, 45, 10155-10162. (IF5y=6.96)

2. Zhao, H. P., Schmidt, K., Lohner, S., Tiehm, A.* Robustness of an aerobic metabolically vinyl chloride degrading bacterial enrichment cultureWater. Sci. & Technol. 2011, 64, 1796-1803. (IF5y=1.324)

3. Zhao, H. P.*, Liang, S. H., Yang, X. Isolation and characterization of catechol-2,3-dioxygenase gene of phenanthrene-degrading bacteria Sphingomonas sp. ZP1 and Pseudomonas sp. ZP2Environ. Technol. 2011, 32, 1895-1901. (IF5y=1.328)

4. Li, H., Zhao, H. P.*, Hao, H. L., Liang, J., Zhao, F. L., Xiang, L. C., Yang, X. E., He, Z. L., Stoffella, P. J. Enhancement of nutrient removal from eutrophic water by a plant-microorganism combined system. Environ. Engineer. Sci. 2011, 20, 543-554. (IF5y=1.023)



1. Zhao, H. P., Schmidt, K., Tiehm, A.* Inhibition of aerobic metabolic cis-1,2-di-chloroethene biodegradation by other chloroethenesWater. Res. 2010, 44, 2276-2282. (IF5y=7.715)

2. Ren, J. R., Zhao, H. P. (share the first author), Song, C., Wang, S. L., Li, L., Xu, Y. T., Gao, H. W.* Comparative transmembrane transports of four typical lipophilic organic chemicalsBioresource Technol. 2010, 101, 8632-8638. (IF5y=5.6)




1. Zhao, H. P.*, Wu, Q. S., Gao. H. W. Degradation of phenanthrene by bacterial strains isolated from soil in oil refinery fields in Shanghai China. J. Hazard. Mater. 2009, 164, 863-869. (IF5y=5.123)

2. Zhao, H. P., Wang, L., Ren, J. R., Li, Z., Gao. H. W.* Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5. J. Hazard. Mater. 2008, 152, 1293-1300. (IF5y=5.123)

3. Zhao, H. P., Zhao, X. T., Gao. H. W.* Interaction of reactive brilliant red with CPC and application to determination of anionic surfactant in water. J. Chin. Chem. Soc-Taip. 2008, 55, 63-68. 

4. Zhao, X. T., Zhao, H. P., Yuan Y., Gao, H. W.* Determination of copper at ng/ml level in surface water using the electrophilic substitution reaction between Cu(II) and 3 – (3- Sulfophenylazo) – 6 – (4- Chloro – 2 – Phosponophenylazo) – 4, 5 – ihydroxynaphthalene – 2, 7- disufonic Acid – Ca (II) complex. Rev. Roum. Chim. 2008, 53, 313-323. 

5. Liu, X. H., Bai, J., Xu, Q., Ren, J. R., Zhao, H. P., Gao, H. W. Spectrophotometric determination of sodium dodecylbenzene sulphonate using congo red. Indian J. Chem. Techn. 2008, 15, 488-492. 

6. Zhao, X. T., Zhao, H. P., Yuan Y., Gao. H. W. Determination of cobalt at ng/ml using the electrophilic substitution Rreaction between Co (II) and chlorophosphonazo-p-Cl-Cu (II) complex. Annali di Chimica. 2007, 97, 251-263. 

7. Li, L., Gao, H. W., Ren, J. R., Chen, L., Li, Y. C., Zhao, J. F., Zhao, H. P., Yuan, Y. Binding of sudan II and IV to lecithin liposomes and E. coli membranes: insights into the toxicity of hydrophobic azo dyes. BMC-Struct. Biol. 2007, 7, 16. DOI:10.1186/1472-6807-7-16


B: Books, Contributor of Chapters:

赵和平,高超超.科学技术与环境健康(浙江大学本科生特色教材). 2015(ISBN-978-7-308-14657-9).


C: Patents:

1. 丁哲利,李廷强,杨肖娥,赵和平,曾峥,许良峰,赵凤亮。一种利用太平二号蚯蚓同步处理圆币草与脱水污泥的方法。发明专利。申请(专利)号: CN201210273396.8, 公开号: CN102786195A. 

2. 赵和平,孟帆,温丽莲。一种石油降解菌群与表面活性剂联合降解水中脱水原油的方法。发明专利。专利受理号:201410532922.7. 专利授权号 ZL201410532922.7,公开号:CN104353667 B

3. 赵和平,孟帆,钟亮,温丽莲,张吟。一种石油降解菌剂及其制备方法与用途,发明专利。专利受理号:201510451863.5. 专利号:ZL201510451863.5,公开号:CN105087538B

4. 赵和平,钟亮,温丽莲,张吟,陈嘉娴。油脂降解菌群的制备方法及应用。发明专利。专利受理号:201610254888.0.

5. 赵和平,钟亮,温丽莲,张吟,陈嘉娴。紫外光解耦合微生物法处理餐厨油脂废水的方法。发明专利。专利受理号:201610343158.8. 

6. 赵和平,钟亮,温丽莲,张吟,陈嘉娴。紫外光解耦合微生物法处理餐厨油脂废水的装置。实用新型专利。专利受理号:2016120479664.5.专利授权号:ZL201620479664.5. 开号:CN205710109 U

7. 赵和平,钟亮,陈嘉娴,吕盘龙,温丽莲,张吟。甲烷氧化耦合降解高氯酸盐的还原菌群的富集方法及应用。发明专利。专利受理号:201611246493.2

8. 赵和平,钟亮,陈嘉娴,温丽莲,张吟。用于富集甲烷氧化耦合高氯酸盐还原的MBBR(Membrane biofilm batch reactor)反应器。实用新型专利。专利受理号:201720099142.7. 专利授权号:ZL201720099142.7

9. 赵和平,陈嘉娴,钟亮,温丽莲,张吟。利用MBBR反应器富集甲烷氧化耦合高氯酸盐还原菌群的方法. 发明专利. 专利受理号:201710057911.1

10. 赵和平,钟亮,陈嘉娴。以H2作为电子供体的锑酸盐生物还原菌群的富集方法。发明专利。专利受理号:201710339581.5

11. 赵和平,钟亮,石凌栋。利用甲烷基质MBfR还原硒酸盐和硝酸盐的方法。发明专利。专利受理号:201710338329.2

12. 和平,钟亮,赖春宇。甲烷氧化耦合铬酸盐生物还原菌群的富集方法及应用。发明专利。专利受理号:201710339582.X

13. 赵和平,钟亮,董秋仪,王振,吕盘龙。一种MBBR中低氧条件下对五价锑还原的作用机制。发明专利。受理号:

14. 赵和平,石凌栋,钟亮,吕盘龙,王振。一种MBBR中古菌细菌对硒酸盐还原的协同作用。发明专利。受理号:

15. 赵和平,石凌栋,吕盘龙,王振,董秋仪,钟亮。一种硝酸盐在氢基质MBfR中对硒酸盐还原的作用机制 。发明专利。受理号:

16. 赵和平,钟亮,吕盘龙,王振,石凌栋。一种硝酸盐对甲烷基质生物膜中六价铬还原的作用机制 。发明专利。受理号:

17. 赵和平,董秋仪,王振,吕盘龙,石凌栋,钟亮。一种以甲烷为电子供体生物去除废水中五价锑的方法。发明专利。受理号: